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• Let there be a random sample x1, x2, . . . , xn of size n drawn from q.
Type νn which the sample induces is νn = [n1, n2, . . . , nm]/n just the
vector of relative frequencies of the m letters in the sample of size n.
Usually n-type is used where it is necessary to highlight size of the
underling random sample.

• There are Γ(νn) = n!
∏m

i=1
ni!

sequences which induce the same type νn.
The number Γ(·) is called multiplicity of type.



Example

Let X = [1, 2, 3, 4].
Let q = [0.13, 0.09, 0.42, 0.36].
Let n = 10
and the sample let be: 3, 4, 1, 1, 4, 3, 4, 3, 2, 4.
The sample induces type ν10 = [2, 1, 3, 4]/10.

There is in total Γ(νn) = 1260 sequences of length 10 which induce the
same type.



Probability that source q generates type νn

What is the probability π(νn; q) that the source q generates type νn?
Well,

π(νn; q) = Γ(νn)

m
∏

i=1

exp(n

m
∑

i=1

νn
i log qi).

For q and νn from the Example it is π(νn; q) = 0.02384831



How many n-types is there?

Let’s denote the set of all n-types (on the alphabet X ), for a fixed n, by
Pn(X ). It is useful to view Pn as a subset of the set P(X ) of all possible
probability distributions on X .

The number of n-types in Pn is J =
(

n+m−1
m−1

)

.

For m = 4, n = 10 it is 286.
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Simple Boltzmann Jaynes Inverse Problem

Imagine that you were told that the source q generated SOME 10-type,
from the set P10 of all 286 possible 10-types. Given the available
information {X , q, n,P10} you have to select a type.

This is an example of BJIP.

BJIP is an under-determined, and in this sense ill-posed inverse problem.

How to proceed?
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Moreover, as n gets larger, J gets larger (π(νn; q) gets smaller) and the
problem harder.

Gets it?

Not at all! Just recall Law of Large Numbers!

LLN: for ε > 0, as n → ∞,

π(νn ∈ B(q, ε); q) = 1.

The larger n, the more types concentrate in the ball centered at the
source q.
Asymptotically there is almost impossible to find an n-type outside of the
q-ball.

So, for very large n we know how to solve this instance of BJIP: select
νn ≈ q.



Two notes

1) Note that among all probability distributions in P, q has the highest
value of the relative entropy H(p || q) = −

∑m
i=1 pi log(pi/qi), with respect

to q.

2) Let ν̂n denote a type in Pn, for which π(νn; q) is maximal. Formally,
ν̂n = arg supνn∈Pn

π(νn; q). It holds true that as n → ∞, ν̂n converges to q.
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Let’s try a harder BJIP. Now, we are given a set Π ⊂ P which does not
contain q. Again, the only available information is {X , q, n, Π}. How to
select n-type from Π???

Example (cont’d): Mean value for q is 3.01. Let Π = {p :
∑

i=1 pixi = 3.2},
so that q is not in Π. Let n = 1030. How to select n-type from Π?

LLN is of little help here. Indeed, LLN can be equivalently stated as:
π(νn ∈ B(q, ε) | νn ∈ P; q) = 1.

We would like to have a statement of the following form:
π(νn ∈ B(?, ε) | νn ∈ Π; q) = 1.

The problem is to determine the point ? upon which the types
conditionally concentrate.
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Conditional Law of Large Numbers, aka Conditional Limit Theorem
(CoLT):
Provided that Π is convex, for ε > 0, and n → ∞,

π(νn ∈ B(q̂, ε) | νn ∈ Π; q) = 1,

where q̂ = arg supp∈Π H(p || q) is the Relative Entropy Maximizing
distribution, over Π.

This also solves the small n problem!

In order to comply with CoLT, one thus has to solve BJIP by REM method;
in other words: to select that n-type(s) from Πn for which the value of
H(νn || q) is maximal.

... or by any other method which asymptotically obeys CoLT.



Maximum Probability method

Set Π10 of 10-types with mean value
∑4

i=1 ν10
i xi = 3.2; and their

probabilities (wrt q):

2 1 0 7 0.000429091
2 0 2 6 0.00817656
1 2 1 6 0.00242601
0 4 0 6 2.99919e-05
1 1 3 5 0.0264166
0 3 2 5 0.00195947
1 0 5 4 0.0359559 *
0 2 4 4 0.0133353
0 1 6 3 0.0193609
0 0 8 2 0.00564692

Type denoted by asterisk has the highest π(νn; q) in this subset.



Maximum Probability (cont’d)

Table 1: MaxProb and REM/MaxEnt
n J ν̂n; q

10 10 0.1000 0.0000 0.5000 0.4000

50 154 0.0800 0.0600 0.4400 0.4200

100 574 0.0800 0.0700 0.4200 0.4300

500 13534 0.0820 0.0700 0.4140 0.4340

1000 53734 0.0830 0.0700 0.4110 0.4360

p̂ 0.0826 0.0709 0.4103 0.4361

As n → ∞ MaxProb type(s) converges to REM distribution.
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There are two options:
1) REM can be viewed as an asymptotic instance of MaxProb.

2) REM is a self-standing method (i.e., when n is finite choose the type(s)
with highest value of relative entropy). REM and MaxProb asymptotically
coincide.
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EType

There is yet another method which asymptotically converges to REM
distribution: Expected Type method (EType). The method selects:

ν̃n =
∑

j=1Jπ(νn
j ;q)νn

j
∑J

j=1
π(νn

j ;q)
.

It can be shown that for set Π with unique REM distribution, EType
converges to REM.

The asymptotic identity of EType and REM however breaks up when there
are several REM distributions!
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• Questions are more important than answers. Problems are more
important than their solutions. When thinking about MaxEnt/REM, it is
worth formulating the problem which is to be solved.

• Boltzmann Jaynes Inverse Problem. Application of REM/MaxEnt for
solving BJIP is justified by CoLT. No need to rely upon axiomatic
arguments, etc. CoLT implies that BJIP can be solved by selecting
REM type also when n is finite.

• Maximum Probability method can be as well justified by CoLT.
MaxProb converges to REM/MaxEnt. When n is finite, it is thus also
possible to select MaxProb type.
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• BJIP is not the only problem where one can ask a question of the form:
’what is the most probable type...’. There is also more complicated
Jeffreys Inverse Problem, where MaxProb asymptotically converges to
Jeffreys Entropy Maximization method. And one could take inspiration
from Robert Niven and think also about Fermi Dirac Inverse Problem
and Bose Einstein Inverse Problem.

• Though everything is possible, not everything is allowed (Roger
Bacon). There are many entropies flying around. Some of them are
even maximized! However, not each of the entropy maximization
method can be given a shelter, in form of an associated inverse
problem and CoLT. Whether there is such a chance for Renyi-Tsallis
Entropy Maximization method is still an open problem1.

1However, check Bercher, arXiv:math-ph/0609077
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